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Abstract

The use of wastewater/reclaimed water for agriculture and
landscape irrigation is a common worldwide practice that im-
proves crop productivity and enhances the climatic resilience due
to the sustainable use of water. Nevertheless, this activity de-
teriorates the groundwater quality in areas where it is applied,
posing potential risks to ecological safety and human health. This
manuscript offers a short overview of the chemical and microbi-
ological pollutants threatening the groundwater quality in zones
subjected to intensive and long-term wastewater irrigation,
describing the main processes involved in the transport of certain
contaminants from the topsoil to the saturated zone.
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Introduction
Wastewater irrigation (WWI) has been a standard prac-
tice to attend the water scarcity issue and increase in

turn the food production [1]. Global estimates from
2017 suggest that about 35.9 Mha of irrigated croplands
worldwide depend on urban wastewater flows, being
China, India, Pakistan, Mexico, and Iran the countries
with the highest estimates of wastewater-dependent
croplands [2]. Nevertheless, recent studies have esti-
mated an irrigation potential of undiluted wastewater at
42 Mha, considering updated values of wastewater
production (380 x 10° m® yr™') [3]. Table 1 shows
several examples of direct and indirect use of raw/
treated wastewater for irrigation in both developed and
developing countries.

Despite the use of raw/treated wastewater for crop irri-
gation has further increased as the wastewater production
has been increased [12], this practice leads to threats such
as the bioaccumulation and biomagnification of metals
and organic pollutants in crops, shifts in the physico-
chemical properties of soils, contamination of ground-
water resources, and health hazards, among others
[13,14]. Regarding the groundwater quality issue, major
ions and trace elements [15,16], organic contaminants
[17], virus, heterotrophic bacteria [ 18] and polyethylene,
polypropylene, and polystyrene micro-nano-particles
contained in wastewater may infiltrate into shallow
aquifers [19,20]. This infiltration deteriorates the
groundwater quality, posing a potential risk for ecological
communities in groundwater receptors and affecting the
health of local populations using this water for domestic
purpose [21]. Hence, the objective of this short review is
to identify the main chemical and microbiological agents
and related processes threatening groundwater resources
in areas where intensive and/or long-term WWI has been
applied. Overall, Figure 1 summarizes the main pollutants
found in shallow aquifers of croplands irrigated by treated
and untreated wastewater.

Salinity and metals

Salinization of groundwater is one of the most severe
impacts caused by WWI. This practice accumulates
considerable quantities of salts in soils due to the high
load of salts in wastewater. These salts are leached beyond
the root areas and the vadose zone, infiltrating into the
aquifers and altering the chemistry of groundwater
[15,22]. Recent studies have demonstrated that the total
dissolved solid (TDS) concentrations in groundwater may
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Table 1

Examples of direct and indirect use of raw and treated wastewater for cropland irrigation in both developed and developing countries.

Country Example of raw/treated wastewater Sources and conditions Impact Reference
irrigation
Pakistan Eighty percentage of the cities with Raw or poorly treated urban and Groundwater contamination [4]
a population higher than 10,000 industrial wastewater is directly Soils contamination
inhabitants use their untreated used or mixed with stream and Changes in the physical and
wastewater directly for soil river waters for crop irrigation chemical characteristics of soils
irrigation. Metal accumulation in food crops
About 25% of the wastewater
generated in Pakistan is used for
soil irrigation
Mexico Seventy percentage of the Untreated wastewater with and Groundwater contamination [5,6]
wastewater (50 m® s7') without dilution. Primary Soils and crops contaminated
generated in Mexico City (20 treatment is performed in with toxic metals
million inhabitants) is used to wastewater reservoirs High prevalence of diarrheal
irrigate 80,000 ha in the disease in children
Mezquital Valley
Mexico Both treated and untreated Industrial and urban wastewater is Groundwater pollution [7]
wastewater coming from the mixed with river waters for crop Gastrointestinal diseases
fourth largest metropolitan area irrigation High risk of suffering cancerous
of Mexico (Puebla—Tlaxcala) is diseases in children
used for irrigation High risk for developing non-
cancerous diseases in adults
and children
China An irrigation district comprising an Undiluted treated wastewater is Accumulation of pharmaceuticals [8]
area of 789 km? in Beijing has used for the irrigation of crops and personal care products in
been irrigated with reclaimed such as cucumber, eggplant, several crops
wastewater since 2003 wheat, and long bean
India Ninety percentage of the Untreated and poorly treated ltchy skin, skin rashes, foot cracks, [9]
wastewater generated by the wastewater (industrial and joint pain, and fever in farmers
Hyderabad City (6.8 million urban) is mixed with river water to using wastewater for irrigation
inhabitants) is used for irrigating irrigate peri-urban and rural
12,000 ha of croplands areas
Iran The use of undiluted treated or Lack of alternative water resources, [10]
partially treated wastewater for limited capacity of cities to treat
crop production is a common their wastewater, the socio-
scene in Iran. However, the economic situation (among
indirect use of raw wastewater others) lead the conditions for
mixed with storm water—stream unplanned and uncontrolled
water—polluted river water for wastewater use and associated
irrigation is very common health problems
downstream of urban centers
with inadequate treatment
facilities
Australia  Two billion m® of municipal [11]

wastewater is treated per year.
Overall, agriculture uses 82% of
all recycled water in the country

increase up to 4-fold regarding background levels in zones
exposed to long-term WWI, where several species such as
chloride are even much more concentrated in ground-
water than in wastewater due to the NaCl accumulation
in soils [23]. WWI practices may also increase the
groundwater sodicity by the NaCl lixiviation and the
reverse cation exchange process (dissolved Ca is
exchanged by Na on surfaces of the aquifer matrix)
[24,25]. Additionally, groundwater—wastewater inte-
grated irrigation systems may exacerbate both salinity and
sodicity due to the evaporative effect of the return flows
(Figure 1) [15]. Overall, the rising salinity and sodicity

may shift groundwater type from Ca—Mg—HCOj3 to Na—
Cl [23]. Indeed, if groundwater is also used for irrigation
in integrated systems, the excessive sodicity may deteri-
orate the soil structure and affect the plant growth [24].
Thus, water classification schemes have been developed
to restrict water for irrigation use, based on the parame-
ters salinity and sodicity.

Because positive metal ions have a strong affinity to the
negative hydroxyl groups of organic matter and clays, the
metals contained in wastewater may accumulate in
topsoil and subsoil horizons of wastewater-irrigated
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Figure 1
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Processes controlling the presence and abundance of chemical and microbiological species that degrade the groundwater quality in areas subjected to
wastewater irrigation (this figure is based on the research carried out in this review).

areas [26]. Hence, some investigations have reported
that WWI does not lead to groundwater pollution by
metals [25]. Conversely, current works have demon-
strated that elements such as As, Cd, Cr, and Pb can
migrate to deep soils in areas subjected to long-term
WWI, reaching and contaminating shallow aquifers
[26,27]. This may result from increased salinity in the
soil systems, because metals such as Cd, Hg, and Pb may
be leached from wastewater-irrigated soils to ground-
water under elevated soil salinity (between 2% and 5%)
[28,29]. Although several metals can migrate through
the soil column, their infiltration into the aquifers may
depend on many factors such as soil grain-size and soil
chemistry, low values of unsaturated zone thickness
(water-table levels generally lower than 8 m), and the
hydrogeological structure of aquifers, among others
[27,30,31]. Additionally, some wastewater characteris-
tics such as pH, salinity, and the content of metals and
dissolved organic matter may limit/promote the trans-
port of metals to the saturated zone. In fact, some
studies report metal contamination (As, Cd, Co, Cr, Cu,
Ni, Pb, and Zn) in groundwater affected by WWI,
whereby the concentrations of the above-mentioned
elements exceed the permissible limits established in

national standards and international guidelines for agri-
cultural and/or drinking purposes [30—33].

Nitrogen inorganic species

Groundwater nitrogen contamination in wastewater-
irrigated areas is one of the most relevant issues of
concern because high nitrate concentrations in
groundwater may cause serious human health threats
(such as methemoglobinemia in bottle-fed infants) and
disrupt multiple water-related environmental services
[34,35]. During WWI, nitrogen enters the system in
form of organic matter contained in the sewage. Thus,
the organic matter is degraded/oxidized by bacteria in
the upper soil horizons and ammonium (NHY) is
released from organic nitrogen. Subsequently, part of
NHj is volatilized as ammonia (NH3) and the rest
percolates to lower soil horizons, where heterotrophic
nitrification occurs under the influence of nitrifying
bacteria [36]. Unreacted NHI together with nitrite
(NO3) and nitrate (NO3) infiltrates into shallow aqui-
fers and their permanence will depend on factors such as
pH, dissolved oxygen and dissolved organic carbon
(DOC) concentrations, NO3/NO ratios, the redox
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potential of the system and the presence of selected N-
transforming bacterial communities such as nitrifying,
denitrifying and ammonifying bacteria, among others
[36—40].

Studies have highlighted the key role of N-transforming
bacteria in the dynamics of N-inorganic species in
aquifers affected by WWI. Overall, both NO3 and NHZ{
are the most abundant N-inorganic species due to their
relatively high stability under oxidizing or reducing
conditions, respectively; whereas NO7 concentrations
remain low in these systems (values below 1.5 mg/L of
NO3?) due to the instability of this ion [36,37,41,42].
Nitrifying bacteria convert NH{ to NO3 and NO3 to
NOj3 under oxidizing conditions [36,38]. Otherwise,
bacteria-assisted NOj3 denitrification occurs during
strong reducing conditions and high DOC/NQOj3 ratios
(heterotrophic denitrification) [38]. Autotrophic deni-
trification may also occur when bacteria denitrify using
reduced inorganic compounds (manganese, iron or sul-
fides), which act as electron donors [39]. In both deni-
trification cases, NOj3 is reduced to gaseous nitrous
oxide (N;O) or nitrogen (N3). Additionally, recently
discovered bacteria-induced processes such as deni-
trifying anaerobic methane oxidation (DAMO) and
anaerobic ammonium oxidation (ANAMMOX) have also
been found to regulate the concentration of N-inorganic
species in aquifer systems affected by WWI, trans-
forming NO3 and NH{ to inert molecular N [37]. In
fact, the ANAMMOX has been considered the major N-
sink process in aquifer systems worldwide [40].

Overall, the groundwater of lands subjected to WWI may
reach concentrations of up to 202 mg/L. of NO3z—N [41]
and 5.2 mg/L, of NH{—N in specific areas where deni-
trifier organisms dominate [36]. Thus, this may pose a
serious threat to groundwater consumers and the envi-
ronment because both nitrates and ammonium may
cause cutrophication in groundwater-dependent water
bodies. The groundwater NO3 may be exacerbated in
groundwater—wastewater irrigation systems due to the
effect of the irrigation return flow [43].

Anthropogenic organics

Organic micropollutants such as pharmaceutically active
compounds, personal care products, prescription and
illicit drugs, industrial organic additives, deodorants, and
fossil-fuel compounds, among others, are present in raw
wastewater because these are released to sewage sys-
tems from point and non-point sources [14,17,44].
These compounds may remain in reclaimed water
because conventional wastewater treatment plants
(WWTPs) exhibit limitations in removing many of these
compounds during the treatment cycle [45].

When raw or treated wastewater is used for irrigation,
volatile and semivolatile organics mainly become

volatilized during the wastewater storage and irrigation
processes [17], whereas most of the organic compounds
reaching the topsoil and subsoil horizons are adsorbed
onto mineral and organic soil-surface structures, being
subjected to biological and/or chemical degradation af-
terwards [46,47]. However, the most hydrophilic and
hard-to-degrade compounds can potentially reach the
shallow aquifers, enhancing groundwater contamination.
Table 2 shows recent studies indicating the most
detected organic compounds in groundwater of areas
irrigated with different wastewater types. It is observed
that the concentrations of these organics in groundwater
are between one and two orders of magnitude lower than
those of irrigated water, suggesting that soil-sorption/
degradation processes amend the levels of organic con-
taminants during infiltration. However, in the study
performed in lands irrigated with treated wastewater in
Wendeburg (Germany), the concentrations of sulfa-
methoxazole and carbamazepine in groundwater were
higher than those found in treated wastewater. This may
be due to the use of a mixture of digested sludge and
treated wastewater in these croplands [48]. The anti-
epileptic drug carbamazepine and the antibiotic sulfa-
methoxazole seem to be the most common
pharmaceuticals in groundwater subjected to WWI.
These are commonly present in WWTP effluents
because they persist through the wastewater treatment
[49]. Additionally, although carbamazepine (log Kow of
2.45) is moderately hydrophobic compared to sulfa-
methoxazole (log Kow 0.89), both compounds show low
affinity to soil-sorption sites and present a strong envi-
ronmental persistence. All these characteristics make
both pharmaceuticals behave almost conservatively
during transport, which explains their presence in
aquifer systems [50].

Other organics such as caffeine (stimulant), acesulfame
(artificial sweetener), and DEET (insect repellent) are
abundant in reclaimed water, wastewater and greywater
and may also reach groundwater during infiltration.
Acesulfame is one of the most useful wastewater tracers
in water bodies due to its ionic nature, high hydrophi-
licity (log Kow —1.33), and high environmental persis-
tence [49]. Similarly, DEET is ubiquitous in
wastewater-affected sub-surface environments due to
its strong recalcitrance to degradation, despite its
moderate hydrophobic nature (log Kow 2.02) [55,57].
Otherwise, although caffeine has shown efficient
removal rates during the wastewater treatment [49,53]
and a quick degradation during the water infiltration
[50], its elevated concentrations in raw wastewater (up
to 250 pg/L) and high hydrophilicity (log Kow —0.07)
make this natural stimulant moving rapidly through the
soil profile, sometimes reaching groundwater [55].
Additionally to these compounds, hydrophilic decom-
position products (metabolites) of the organics
degraded in the soil horizons may also reach the satu-
rated zone, increasing the risk of contamination with
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Table 2
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Most detected organic compounds in groundwater of areas irrigated with different wastewater types and their range of concentrations in

irrigation water and groundwater.

Location Irrigation water type Compounds Irrigation water Detection frequency Groundwater Reference
range (ng/L) in groundwater (%)  range (ng/L)
Gran Canaria Island Reclaimed water Nicotine 132.6 £ 9.0 85.7 <39.4-113.6 [51]
(Spain) Caffeine 116.1 + 6.8 71.4 <2.9-44.9
Atenolol 208.7 + 17.6 50 <12.4-67.7
La Plana de Castellon Reclaimed water Bezafibrate 780-1219 92.8 <1.3-12 [52]
(Spain) Carbamazepine 84-97 71.4 <0.2-1.9
Primidone 57-151 64.3 <1.1-75
Sulfamethoxazole 115-140 57.1 <0.5-6.1
Acetaminophen 44-106 50 <1.1-63
Pennsylvania (USA) Reclaimed water Sulfamethoxazole <100-317 x 10° 40 <100-27,410 [53]
Caffeine <100-258 x 10° 32 <100-14,150
Naproxen <100-347 x 10° 19 <100-98,390
Area of Oued Souhil Reclaimed water Triclozan ~90 50 <20-289 [54]
(Tunisia) Carbamazepine 690 41.6 <20-155
Sulfamethoxazole ~200 33.3 <20-46
Enoggera Catchment Greywater DEET 1200-1800 95 <5-12,000 [55]
(Australia) Caffeine 2.4 x 10°-13 x 10° 920 <20-140
Acesulfame 350-610 90 <5-340
West Bank (Palestinian ~ Treated greywater  Azithromycin 0.3-5.1 16.7 0.3—-27.6 [56]
territories) Ciprofloxacin 0.4-87.4 33.3 0.4-70.5
Penicillin G 0.7-63.1 8.3 0.7-42
Sulfamethoxazole 0.5-18.1 0 <1.02
Caffeine 40.4—-190,000 100 23.8-953.4
Wendeburg (Germany)  Treated wastewater Sulfamethoxazole 61.9-85.4 - 98.2-406.9 [48]
Carbamazepine 43.4-107.2 - 168.5-272.3
Mezquital Valley Raw wastewater Bis-2-(Ethylhexyl) 570-62,300 100 120-1830 [17]
(Mexico) Phthalate
Dibutylphthalate 290-71,600 100 170-420
DEET 32.7-2500 95.2 <0.4-5280
Sulfamethoxazole <1.3-6570 85.7 <1.3-46.6
Carbamazepine 17.2-370 47.6 <1.8-99.7

potentially hazardous organic micro-pollutants [17]. In
addition to these compounds, there is a large number of
antibiotics and other anthropogenic organics contained
in manure and sewer sludge used as crop fertilizers in
agricultural lands, which also contaminate groundwater
resources [58,59]. Surely, these compounds are also
abundant in wastewater compartments and may also
occur in groundwater of lands subjected to WWI.

Unlike other anthropogenic organics such as pharma-
ceuticals and personal care products, the phthalate
esters have been poorly addressed in groundwater of
croplands irrigated with wastewater. Because these
endocrine disruptors cannot be efficiently removed
through the wastewater treatment process, they are
abundant in reclaimed water and raw wastewater used
for irrigation [17,60]. These compounds are rapidly
retained by soils because of their high hydrophobicity,
although their transport toward deeper horizons de-
pends on the physicochemical characteristics of soils
such as temperature, grain-size distribution, mineral-
ogical composition, exchangeable ion capacity, and
organic matter content [61]. Studies performed in

wastewater-irrigated soils demonstrated that the soil-
phthalate hydrophobic interactions may result weak
and phthalates may be desorbed and lixiviated to
groundwater when a strong complexing carrier phase
such as dissolved organic matter is present [62]. In fact,
a recent study performed in Mexico (Table 1) found
clevated levels of bis-Z-ethylhexyl phthalate and dibutyl
phthalate in groundwater derived from untreated WWI,
wherein the former showed concentrations higher than
the value of 0.32 pg/L. defined by U.S. guidelines for safe
drinking water [63]. The authors suggested that the
presence of both high molecular weight phthalates in
groundwater is due to their high environmental persis-
tence [17].

Plastic pollution

Microplastics (MPs, particles <5 mm) and nanoplastics
(NPs, particles between 1 and 1000 nm) in the envi-
ronment have raised attention in recent decades due to
their slow degradation and potential risks to the eco-
systems [64]. Owing to some plastic microparticles such
as facial cleanser microbeads and synthetic clothing
fibers (among others) are released to the sewage system

www.sciencedirect.com

Current Opinion in Environmental Science & Health 2022, 25:100322


www.sciencedirect.com/science/journal/24685844

6 Environmental Monitoring and Assessment 2022: Management of Groundwater resources and pollution prevention

during household activities, both raw wastewater and
greywater may contain important levels of MPs and NPs.
However, given that WWTPs are not designed to spe-
cifically remove plastic material [65], household plastics
may drain through the sewage system to agricultural
lands, affecting irrigated soils. However, research till the
date on MP pollution in groundwater of areas subjected
to WWI is still limited. A recent study performed in
groundwater of agricultural lands in Victoria (Australia)
found MPs in all groundwater samples with abundances
that varied from 16 to 97 items/L,, being the micropar-
ticles of polyethylene and polyvinyl chloride the most
detected [66]. This study suggested that the most
probable way for groundwater MP contamination was
the MP permeation through the soils.

Although the permeation of MPs through soils seems to
be restricted, there is consistent evidence suggesting
the vertical migration of MPs from soils to groundwater
[19,20,67,68]. Some factors such as composition and
properties of soils (sandy, silty, and clayey), the charac-
teristics of MPs and NPs and the co-presence of other
substances have been shown to impact on the transport
behavior of plastic particles in porous media [19,69].
Densities and surface properties of NPs and MPs can
condition their mobility in porous media; however, their
additives may also be a key factor controlling transport
[69]. For example, the presence of the plasticizer
diethylhexyl phthalate restricted the transport of NP
particles on gibbsite-coated sands due to this plasticizer
caused chemical heterogeneity, which promoted the NP
deposition [70]. Additionally, other substances such as
surfactants, black carbon, and colloids may be adsorbed
onto available sorption sites on porous media, affecting
the MPs deposition/mobility [69]. An interesting issue
is the transport behavior of MPs in soils under the
presence of organic matter. Due to the characteristics of
the raw wastewater, its high content of dissolved organic
matter may play an important role in the transport of
MPs and NPs through the soil column in croplands
subjected to WWI. For example, natural organic matter
has been found to cover the porous media and the sur-
face of MPs and NPs, increasing the electronegativity in
both the mineral surface and the plastic surface. This
prevents the deposition of the plastic particles in the
media by repulsive forces, increasing their mobility and
transport [69,71]. Therefore, the study of the transport
of MPs and NPs through soils irrigated with raw
wastewater with high content of organic matter is an
important issue of concern that should be addressed.

Finally, it is important to point out the role of the MPs in
the transport of other contaminants to groundwater
systems. Both MPs and NPs may act as a vector of
various pollutants including metals, pharmaceutical and
personal care  products, hydrophobic  organic

contaminants, plasticizers, and pathogen organisms
through combination and sorption [68,69]. Therefore,
owing to all of these contaminant are abundant in
treated and raw wastewater, MPs might be an important
carrier phase of absorbed pollutants from irrigated lands
to aquifers. Moreover, recent works have shown that
these plastic particles shift the sorption behavior of
pesticides in soils, increasing the pesticide mobility to
groundwater systems [68]. Thus, studies should be
carried out to understand the role of the MP and NP
particles in the migration of heavy metals, microbiolog-
ical agents, personal care products, antibiotics, and other
organic and inorganic pollutants through the soil column
in agricultural lands.

Microbiological agents

The microbiological contamination is another issue of
concern in groundwater of areas subjected to raw WWIL.
Groundwater of these areas has shown values of total
coliforms (TC) and fecal coliforms (FC) above the
limits of national standards and international guidelines,
indicating possible contamination with pathogens. For
example, values of TC and FC of up to 750 and
150 colony-forming unit (CFU)/100 mL,
respectively, have been measured in groundwater of
mixed wastewater-irrigated sites in the Nile River
Delta, Egypt [72]. Similarly, values of TC, FC, and
enterococci of up to 404, 53 and 370 CFU/100 mL,
respectively, have been reported in groundwater of lands
irrigated by raw wastewater in Mexico [73]. This study
also reports the detection of rotavirus, enterovirus, and
astrovirus in raw wastewater, although those enteric vi-
ruses were not detected in groundwater. This may be
the result of a significant attenuative capacity of the
aquifer matrix with regard to microbial transport.
However, the transport of viruses and other pathogens
may be promoted in shallow/fractured aquifers, condi-
tions that may cause serious microbiological hazards to
groundwater [18].

Conclusions

"This short review highlights the main aspects regarding
the chemical and microbiological contamination of
groundwater in agricultural lands subjected to WWIL.
Opverall, this practice (WWI) increases the levels of
salinity and sodicity in groundwater and may incorporate
several toxic metals to soils, mainly if raw wastewater is
used for irrigation. Once inside upper soil layers, several
metals such as As, Cd, Cr, and Pb may infiltrate through
the soil column, reaching shallow aquifers. Nitrate was
identified as one of the most common contaminants in
groundwater of areas subjected to WWI practices. Owing
to its toxicity at elevated concentrations and eutrophi-
cation effects on groundwater receptors, the study of
this compound and its transformations in aquifer
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systems is an issue of concern that deserves further
attention in areas irrigated with treated or un-
treated wastewater.

Regarding the anthropogenic organics, the antibiotic
sulfamethoxazole and the antiepileptic drug carbamaz-
epine seem to be the most studied and detected com-
pounds in aquifer systems impacted by WWI practices.
This peculiarity is led by their worldwide use in the
treatment of related diseases, their high environmental
persistence and their low affinity to soil-sorption sites. It
is noteworthy to mention that although antibiotics,
personal care products, sweeteners, and other persistent
organics have been assessed in aquifers of urban, rural,
industrial and agricultural areas around the world, the
study of the abundance of these compounds in aquifers
of croplands recharged by wastewater is still limited.
Numerous soil column experiments simulate the
transport of these contaminants using wastewater as a
source [74,75]; nevertheless, more on site studies are
needed in order to understand the processes governing
the mobility of old and new organic contaminants and
their metabolites in wastewater-irrigated soils under
real conditions.

Another interesting issue regarding the groundwater
derived from WWI practices is the acquisition of anti-
biotic resistance genes by bacteria. Even though the
study of antibiotic resistance has been mainly focused on
soils subjected to WWI [76], only two recent works have
pointed out that treated WWI promotes the dissemina-
tion of antibiotic resistant genes into subsoil pore-water
and groundwater, maintaining the bacterial load [48,77].
Hence, this topic deserves special concerns in the near
future. Thus, more field investigations about the anti-
biotic resilience in the groundwater microbial commu-
nities of wastewater-irrigated areas are needed.

Owing to MP and NP contamination is a recent issue of
concern, there are limited studies regarding the assess-
ment of plastic particles in aquifer systems, especially in
wastewater irrigated areas. However, both observational
and experimental evidence confirm the migration of
these plastic particles through the soil column. In
addition, experimental studies have demonstrate that
this migration is enhanced in presence of organic matter.
Therefore, future efforts should be directed to the
assessment of MP contamination in groundwater re-
sources affected by WWI in agricultural lands and the
study of the MP and NP transport in soils irrigated by
raw wastewater.

Finally, although WWI leads some benefits such as water
shortage solutions, bioavailable nutrient sources for crops
and nutrient reuse (which diminishes the eutrophication
of surface waters), this practice may lead serious
contamination problems in groundwater systems.
Therefore, it is necessary to perform risk-cost-benefit

Effects of wastewater irrigation on groundwater Mora etal. 7

analyses of the use of wastewater in croplands, mainly
in regions irrigated with untreated wastewater, in order to
change the sources used for irrigation and/or implement
better strategies to prevent groundwater pollution.
Strong management strategies may include the applica-
tion of treatment technologies for the elimination of
contaminants in wastewater maintaining the nutrient
levels and the use of suitable irrigation technologies. The
implementation of these high-priority-actions can lead
substantial benefits in crop productivity, carrying out a
more efficient use of water resources and minimizing
risks of groundwater pollution.
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